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The problem of charged perfect fluid distribution is investigated when the 
space-time is described by the Eins te in-Rosen metric. It is shown that with 
assumed cylindrical symmetry the cosmological constant  A vanishes, the electro- 
magnetic field becomes source-free, and the perfect fluid reduces to Zel'dovich 
fluid with p --- O- Sets of exact solutions for this case have been obtained and the 
corresponding solutions for Brans-Dicke-Maxwel l  fields have been derived. For 
these solutions the Eins te in-Rosen metric, however, goes over to three-parameter 
Marder metric in Brans-Dicke theory. 

1. INTRODUCTION 

Misra and Radhakrishna (1962) have obtained sets of exact solutions 
for the case of cylindrically symmetric source-free electromagnetic fields 
when the space-time is described by the Einstein-Rosen metric. Considering 
the same metric, Rao et al. (1972, 1973) have obtained solutions for coupled 
zero-mass scalar and source-free electromagnetic fields and have studied the 
physical behavior of those solutions. They (Rao et al., 1974a, b, 1975, 1978) 
have also extended the study to the case of Brans-Dicke fields. 

Recently Rao et al. (1980a, b) have tried to consider the problem of a 
charged perfect fluid in cylindrically symmetric space-time described by the 
Einstein-Rosen metric. However, owing to the symmetry imposed by the 
metric the problem has reduced to the case of interacting source-free 
electromagnetic field and Zel'dovich (1962, 1972) fluid (characterized by 
equivalency of pressure and density) distributions. In this paper they (Rao 
et al., 1980a, b) have obtained a class of solutions and have shown how to 
generate source-free electromagnetic and Zel'dovich fluid solutions from 
those of Zel'dovich fluid solutions. However, this class of solutions does not 
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exhaust all possible solutions. The present work is an extension of the work 
of Rao et al. (1980a, b). We have considered here, as before, the problem of 
Rao el al. (1980a, b) (i.e., charged perfect fluid) with cosmological constant 
A, where we assume A to be positive in order to have gravity theory as an 
analog of particle physics (Wesson, 1980). The symmetry condition again 
forces the electromagnetic field to becomes source-free, the perfect fluid 
reduces to a Zerdovich fluid with equation of state p = 0, and the cosmo- 
logical constant A vanishes, Sets of exact solutions for this case have been 
obtained. 

Since the Zel'dovich fluid behaves as a zero-mass scalar field when the 
fluid is suitably restricted, using the transformation of Tabensky and Taub 
(1973) we have generated the corresponding solutions of our problem in the 
Brans-Dicke theory (henceforth referred to as the BD theory). It turns out, 
however, that the two-parameter Einstein-Rosen metric goes over to the 
three-parameters Marder (1958a, b) metric. Incidentally we may remark that 
the electromagnetic field remains unchanged owing to the conformal prop- 
erties of the Tabensky and Taub (1973) transformation. 

2. FIELD EQUATIONS 

Einstein field equations for the region of space-time in the presence of 
a charged perfect fluid distribution are 

G,,-= R , j . -  �89 + Ag u = - K(T,,  + T,',) (1) 

where K ( = 87rG, C = l) is the gravitational constant, and 

1 ( 1 ) 
T,, = ~ - F , ,F f  + -~gi jF~bF ~h ( la)  

and 

1 
T ' j = ~ [ ( p + p ) U i U j - p g , j ] ,  U, U i =  1 ( lb)  

are electromagnetic and perfect fluid stress energy tensors, respectively. ~ j ,  
the electromagnetic field tensor, satisfies the field equations 

Fij = Ai. j - Aj.  i (2) 

F. 'J= - 4 7 r U ' o  (3) 
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where A t and U '  are the e lectromagnet ic  four-potent ial  and four-velocity 
vectors,  respectively. Here O, P, and o are, respectively, mass density, pres- 
sure, and charge density. A c o m m a  or semicolon followed by an index 
denotes  partial  or covar iant  differentiat ion,  respectively. 

We consider  the nonstat ic  axially symmetr ic  E ins te in -Rosen  metric 

d s 2 =  e 2a 2B( d t2  - d r 2 ) -  r2e 2B dO2 - e2B dz  2 (4) 

where a and /3  are functions of r and t only and r, 0, z, and t correspond to 
x ~, x 2, x ~, and x 4 coordinates,  respectively. As a consequence of axial 
symmetry ,  we have A,. 0 = 0 =  A,,. .  Hencefor th  the lower suffixes 1 and 4 
after  an unknown function denote  partial  differentiat ion with respect to r 
and t, respectively. 

Using a comoving  coordinate  system [U I = U 2 = U 3 = 0 ,  U 4 = ( g 4 4 ) - 1 / 2 ] ,  
f rom two of the field equations,  viz., G I I = - K ( T I ; + T ~ I )  and G44 = 
- K(T44 + T&) by subtraction,  we get 

K (  K II 44 , K ,~ ~ 
2 A + 4 ~  r p - p ) - ~ g  g F,4-+-~-~g--g-F23-=O (5) 

Since the metric  potent ials  g~ ~, g = ,  and g33 are negative and g44 is positive 
and for physical  distr ibutions of interest A ~>0 (Wesson, 1980) and O ~> P, 
the above equat ion implies 

A = 0 ,  p =  p, Fi4 = 0 ,  and F23 = 0  (6) 

The  perfect fluid therefore reduces to the "Zel 'dovich fluid" (p = p ) and the 
cosmological  constant  A vanishes identically. Using (6) in equat ion (3) with 
i = 4, we get 

o = 0  (since U 4 vs0) (7) 

The  conclusions arrived at, viz., A = 0 ,  p = p ,  and o = 0  are invariant  
s ta tements  and hold in all coordinate  systems eventhough we have derived 
them using a comoving  coordinate  system. Since F~4 = 0  = F, 3, f rom equa- 
tion (2), we get that only two components ,  A 2 and A 3, of electromagnet ic  
four-potent ia l  vector  A i de termine  all the surviving componen t s  of F,j. 
P u t t i n g  A 2 = ~b and A 3 = ~, we obtain  

F12 = - q,,, Fi3 = -- 4',, &4 = ~4, and F34 = q'4 (8) 

With the help of the equat ions (6) and (8) and subtract ing G22 = -- K(T22 + 
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/',_2) from G 3 3  = - K(T33 + T~3) of the field equations (1), we have 

f l t l _ f l 4 a +  fl, _ K e" ~ Cp4.)_e_2/~(~bl2 +42) (9) 
r 8vr 

We can take equation (9) in place of the field equation G33 = - K(T33 + T~3). 
Using (6), (7), and (8), the field equations finally take the form 

c q = r  c { 1 1 - - ~ 4 4 + 2 B , 2 + ~ -  --;-4)4 + e  
r" 

Kr( e2~ ) eq=2rB~B4 +X_~ ~__ r162 + e 2~+#4 (11) 

p(=o)=e 2a+2B[ 2qr_K_(,ctll_a44_2fl42+_~L) 

1 e - 2 B  _ 2fl~,42] 
2 r 2 q~12 + e (12) 

J 

flll--/~44 q-i l l  -- g[ e2fl--~ 2fl(@12--@42)] (13) r 8~" r (~b'2 - ~b42)- e -  

q)l~bl - -  q~4~4 = 0  ( 1 4 )  

q)ll -- (/)44 ~' --2fl4q~4--2fll~l (15) r 

q q l -  q'44 + q'_L =2fl lq q _ 2f14~k4 (16) r 

The problem now is to solve the overdetermined set of highly nonlinear 
differential equations (10) to (16) for the unknowns q~, qJ, a, fl, and p ( = p). 
The satisfaction of the field equations by direct substitution of the solutions 
obtained by us meets the requirement of the overdeterminacy. 

3. S O L U T I O N S  

Because of the complicated structure of the field equations, we solve 
them under the following three cases: 

Case IIIA: q~ =0,  q, 4:0 (i.e., Fj3 4:04= F34, the rest of Fij =0);  
Case IIIB: q~ =0,  ~k = 0  (i.e., F12 =J60:~ F24, the rest of ~ j  =0);  and 
Case IIIC: q~ 4:0, q, 4=0 (i.e., Fl4 = 0  = F23, the rest of F,j 4=0). 
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Case IliA: ~ = 0 ,  +4 :0  (i.e., F!3:~04: F34, Rest of F/j =0). For this 
case the equations (14) and (15) are satisfied identically (since + =0)  and 
thus we are required to solve the field equations (10)-(13) and (I5) for the 
unknowns +, a,/3, and p ( =  p). 

Case I I I  A (1). Let us assume + to be a function of r only, Equation 
(16) reduces to 

/3 = �89 [ log ( r+ , )+  L ( t ) ]  (17) 

where L is arbitrary function of time only. Substituting this value of/3 from 
(17) in (13), we get 

d 2 1 d 
ar e l og ( r+ , )+ - r~ r r  l~  

d 2 L  _ K +1 

dt 2 4~r r 
e - c  (18) 

As + is a function of r and L is a function of t only, equation (18) will hold 
if either + ~ / r  is a constant or L is a constant. 

Subcase l l l A ( 1 ) a .  Assuming L to be a constant, say 

L = - l o g f  (19) 

we get from (18) 

d 2 1 d +' (20) 
dr 2 l o g ( + , r ) +  - r d r  log(+,r)  = - U--r 

where we take u = Kf/47r.  Solving equation (20), we get 

- q s )  + = b -  q t a n h ( -  ~- logr + 
u 

(21) 

Here and in what follows small Latin letters except r, t, and z denote 
arbitrary constants unless otherwise stated. 

Substituting (19) and (21) in (17), we get 

/3=3 (22) 

Solving the equations (10) and (11) with the help of (21) and (22), we obtain 

_ q 2  
a - -  -~- log r + hr  2 + g (23) 
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Putting the values of q~, fl, and a from (21)-(23) in (12) we have the pressure 
a s  

+s)e t24  p ( =  0 ) =  - - v r  2 r 
/d" 

The solution of the field equations is given by (21)-(24). 
Subcase l l l A ( l ) b .  In the alternative case considering } ~ / r  to be a 

constant, say f ,  we get 

I 9 q, = ~fr"  + d (25) 

With this value of + equation (18) reduces to 

L44 - eu - L =0 (26) 

The general solution of (26) is 

Substituting the values of ~ and L from (25) and (27) in (17), we get 

/3 = ~ log r 2cosh2 ~ t + s 

Again substituting the values of } and /3 from (25) and (28) in (11) and 
subsequently in (10) and solving, we obtain 

Finally putting the values of +, 13, and a from (25), (28), and (29) in (12), we 
get 

q f---~-2 ( 8 h - q Z ) s e c h 2 ( - ~ t + s ) e - Z < h ~ + g '  (30) 
p ( =  p ) =  2q2 

Hence in this case (25), (28), (29), and (30) constitute the solution of the 
field equations. 
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Case ILIA(2). In this case let us assume ~b to be a function of time 
only. Thus we get from (16) 

fl = �89 [ l o g ~ 4 -  Z ( r ) ]  (31) 

where L is an arbitrary function of r only. 
Substituting (31) in (13), we get 

d2L + 1 dL d 2 K 
dr  2 r ~ + dt  2 log~4 - --~4eL4~r (32) 

Since + is a function of time only and L is a function of r only, the equation 
(32) will hold if and only if either L or q~4 is constant. 

Subcase IHA(2)a. First assuming L to be a constant, say, 

L = l o g f  (33) 

and solving equation (32), we get 

~b = b - q  t a n h ( - - ~ / + s )  (34) 
u 

Putting the values of L and ~ from (33) and (34) in (31), we get 

t q t] / ?= -~ log  sech 2 - t + s  (35) 

Substituting the values of q, and B from (34) and (35) in (10) and (11), and 
solving we obtain 

et = hr  2 + g (36) 

Finally, inserting the values of q,, fl, and a from (34)-(36) in (12), we get the 
pressure 

2 q t + s ) e  2(hr2+g) p (=p)=~u2(8h -q2 ) sech2 ( -~  (37) 

Thus in this case the solution is given by (34)-(37). 
Subcase IIIA(2) b. In the case when ~4 is constant, say f, we write 

= f t  + d (38)  
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With this value of 6, equation (32) yields the solution 

L = - l o g  ~ r ' c o s h "  ~ l o g r + s  
q- 

With the help of (31), (38) and (39), we get 

fl = ~ log _ r 2 cosh 2 ( 2 log r + 

These values of 6 and fl when substituted in (11) give, after integration, 

,~= S( r )  (41) 

where S is an arbitrary function of r only. Again substituting 6, B, and a 
from (38), (40), and (41) in (10) we get the differential equation 

q2 tanh2( q q r - S i i - r S l = - 2 -  ~ - ~ l o g r + s ) - 2 q t a n h ( ~ l o g r + s )  (42) 

It is difficult to get the particular integral of the above differential equation 
for general value of q. Hence we solve for a certain value of q, say for q = 2. 
The solution of (42) for this case is 

,x = log[r2cosh2(log r + s)] + hr 2 + g (43) 

Now putting the values of 6,/7, and ~ (when q =2) in (12), we get 

P ( = 0 ) = f 2hr - 2 sech 2 (log r + s ) e - 2~ h r-" + q) (44) 

Thus in this case the solution of the field equations is given by 

' [ - S '  ' ,] 6 = ft + d, fl = -~ log r-cosh-(log r + s 

a=log[r2cosh2(logr  + s)] + hr 2 + g (45) 

p (  = p )  = f 2hr - 2 sech2(log r + s )e  - 2~hr: + g~ 

Case III B: q> r ~ = 0  (i.e., Fi3 @:0=/= F~ and Rest of Fi)=0). Since 
6 =0,  equations (14) and (16) are satisfied identically and hence we have to 
solve the rest of the field equations (10)-(13) and (15) for the unknowns d#, 
a, fl, and p ( =  p). 
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Case IIIB(1). The following two sets of solutions are obtained for the 
case when q~ is a function of r only [similar to the case A(1)]: 

Subcase IIIB(1) a. 

O=b+2tanh(l~ / 3 = ~ l o g  ~ - r - c o s h - ( l o g r + s )  

ot = log[rcosh2(log r + s)] + hr 2 + g (46) 

P( = O)= hf2r-2sech2(log r + s)e 2~hr:+gl 

Subcase III B(I) b 

t /3 = ~- log sech 2 - ~- t + s 

o~= hr2 + g 

p ( = P ) =  8-~2 ( 8 h -  q 2 ) s e c h 2 ( - q t  +s)exp[-2(hr2+ g)] 

(47) 

/3=llog(~-f  r2cosh2(-qt+s)] 

[ ( q ) ]  a = l o g  rcosh 2 - ~ t + s  +hr2+g 

P(=P)=-- - 5 -  q- 

Subcase llI B(2) b. 

O=ft+d,  [q2sech2  q /3 = ~- log ~uuf ~- log r + s 

q2 
c~ = -~- log r + hr 2 + g 

q 2 h -  q2/2sech2 ( q ) 2,h~-" + ~, p(=p)=---Tr -- ~- logr + s  e -  
U- 

(48) 

(49) 

0 = b - - q  tanh( q ) u - ~ t + s  , 

Case IIIB(2). The following two sets of solutions are obtained for the 
case when q~ is a function of time only [similar to the case A(2)]: 

Subcase llI B(2) a. 
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Case IIIC: ~ = 0 ,  1/,=/=0 (i.e., E l 4 : 0 =  F23, Rest of Fii=/=O). In this case 
the equation (14) implies the following three possibilities or else we find the 
cases already discussed (viz., cases A and B): 

Subcase IIIC(1): eo and ~b are functions of the type ~ = ~b = F(r + t) or 
= q, = F(r - t), where F is an arbitrary function of 

(r + t) or ( r -  t): 
Subcase 1IIC(2): dO is a function r and q, is a function of t only; and 
Subcase II1 C(3): ~ is a function of time and q, is a function of r only. 

Subcase IIIC(1). As it is impossible to get the integral of an arbitrary 
function we consider the particular functional forms for ~ and f, as 

, = + = ( r -  t)" (50) 

where n is any real number except zero. Then both the equations (15) and 
(16) lead to a single equation, viz. 

1 /3, +/34 = ~  (51) 

With the help of (50) equation (13) reduces to 

/3,,-/3~ +/3--' =0 (52) 
r 

Solution of equations (51) and (52) is 

/3 = �89 log( r~ m) (53) 

Solving equations (10) and (11) with the help of (50) and (53), we obtain 

K ( l + m 2 ) n  2 - i  1 
a -  4 r r r n ( 2 n _ l ) ( r - , )  2" + - ~ l o g r + h r 2 + g  (54) 

Finally putting these values of qa, q,, /3, and a from (50), (53), and (54) in 
(12), we get the pressure as 

8"h,/2 f [ K ( x + m 2 ) n 2  t) 2"- ]} (55) r exp]-Z[4 rm(Zn_l)(r- '+hr 2+g 
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In this case (50) and (53)-(55) consti tute the solution of the field equations. 
Subcase 111C(2). Since q'4 = 0  and ~b I = 0  for this case, equation (15) 

leads to /3  = �89 I ) + N(t)] and equation (16) becomes/3  = �89 [log ~b 4 + 
M(r)] ,  where M and N are arbitrary functions of r and t, respectively. 
Compar ing  these values of/3,  we get 

- -  1 ]3 - ~ log( r ~b 4/ r  ) (56) 

Substi tut ing/3 from (56) in (13), we obtain 

d2 l o g ( q S , / r ) +  1 d d 2 K q~,q'4 
dr 2 r ~rr l o g ( q ~ / r ) +  ~ t  2 log~b 4 - 2~r r (57) 

As before since r is a function of r and ~b is a function of t only, equation 
(57) will hold only if (co l / r )  is a constant  or ~b 4 is a constant.  

Subcase HIC(2)a .  Assuming ( 4 , t / r )  to be a constant,  say f ,  we get 

_ ,  2 (58) e p - ~ f r  + d  

With this value of ~, the general solution of equat ion (57) is 

q qtaoh( +s) (59) 

Now from equations (56), (58), and (59), we have 

fl = ~- log sech- - -~ t + s (60) 

Successively solving equations (11) and (10) with the help of q~, ~b, and /3 
from (58)-(60),  we obtain 

a =  hr 2 + g (61) 

Finally substituting ~, ~, fl, and a from (58)-(61) in (12), we get pressure as 
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Subcase IIIC(2) b. 
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In the alternative case when #4 is a constant we get 

~ , : f t + d ,  q s) +=  b -  ~u tanh(-  ~ logr + 

/3=~log sech 2 - - ~ l o g r + s  

q2 
a=  ~- logr + hr 2 + g 

hq~ _q2/2sech2( q )e_ 2(hr2 +g ) P(=O)= 2u 2r -~ logr + s (65) 

Subcase I l l  C( 3) b. 

the following solutions: 

= ft + d, ~ = b + 1 tanh(logr + s) 
lg 

p = ~ log[ufr~cosh2(log r +s )] 

,~ = log[r2cosh211og  r + s ) ]  + hr 2 + ,~ 

p(=o)=Zhf2r-2sech2(logr+s)e  2c"r~+.~' (63) 

Subcase IIIC(3). Adopting the procedure of the subcase III C(2), the 
following two sets, IIIC(3)a and IIIC(3)b, are obtained: 

Subcase IIIC(3) a. 

1 ~ q s )  + = ~ f r - + d ,  , = b - ~ u t a n h ( - ~ , +  

B = ~ l o g  r2cosh 2 - ~ t + s  

q s ) ] +  hr2+g 

q p ( = p ) = f ~ ( s h - q 2 ) s e c h 2 ( - ~ t + s ) e x p [ - 2 ( h r 2 + g ) ]  (64) 
q- 
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4 .  C Y L I N D R I C A L L Y  S Y M M E T R I C  B D - M A X W E L L  

S O L U T I O N S  

In this section following Tabensky and Taub (1973) and Rao et al. 
(1974a, b) we have generated the solutions of the BD theory from those of 
the Einstein theory. The transformation reads as follows: 

P = 0 = gU V, Vj, (66) 

�9 = exp[(2V ) ' / 2 / (  w + 3/2) '/2] (67) 

,l, gi' j = g , ;  ( 6 8 )  

where g',j, �9 are the solutions of the BD theory with the coupling constant 
w 4= - 3/2 and gu are the solutions of Einstein's theory. Relation (66) yields 
a zero-mass scalar V, and relation (67) constructs the scalar �9 of BD theory. 
Thus BD Maxwell solutions can be generated from Einstein-Maxwell- 
Zel'dovich solutions where the electromagnetic field remains unchanged by 
the above transformations. That is, 

E,j = F u (69) 

where E u is the electromagnetic field tensor of the BD-Maxwell field and 
F,j is that of the Einstein-Maxwell field. 

Let us consider the solution (47) in which p ( =  O) is obtained from 
equation (12) by using/3 and a from (42) and (45) for the case q =2. Thus 

8vrh - 2,, + 2/~ p ( = p ) = ~ e  (70) 

Again for the metric (4), equation (66) reduces to 

p ( =  p ) =  e--~o + 2~(v42 - v, 2) (71 

Equations (70) and (71) together lead to 

, 8~rh (72) 
V4--VI-=- K 

It is to be noted here that the BD scalar �9 corresponding to the zero-mass 
scalar V is not only governed by the Equation (72) but also by the scalar 
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wave equation [for the metric (4)] 

g'lV:i : =0  

which is a consequence of the restriction on Zel'dovich fluid to 
zero-mass field. Hence a solution satisfying (72) and (73) is given by 

( 8rrt/ ) '/2 
V =  T t + a  

The solutions for the BD-Maxwell field equations 

l ,  l ' E  
G,, = R,j - 2g,  jR - 4vr~ [ -  E,.Ej' + ~-g,., .h ] 

and 

= o  

E,/= AI. , - AS. i (surviving components of E,.j are determined 

by A; =~" and A; rl) 

~ k  = 0 (with coupling constant w =/= - 3 / 2 )  :k 

MohanD' et al. 

(73) 

be a 

(74) 

(75) 

(76) 

f i =  ~ log r2cosh2( logr+s)  + 
(8rrh / K  )l/2t + a 

(2w + 3) 1/2 
(79) 

(8rrh /K )1/2/ + a 
~= - 2  = - l o g ~  

(2w +3)  I/2 

~'=0, r l = f t + d ,  f f = 2 1 o g [ r c o s h ( l o g r + s ) ] + h r 2 + g  

can be generated easily with the help of (67), (68), and (74) as 

d s 2 = e  2s 2B(dt2-dr2)-r2e 2BdO2-e2B+2'rdr2 (78)  

for the space-time described by the general cylindrically symmetric metric 
(Marder, 1958a, b) 

(77) 
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It may be verified by direct substitution that (79) is the solution of (75)-(78) 
for K :4rr.  

5. CONCLUSIONS 

It may be mentioned here that the solutions of the purely Einstein- 
Maxwell source-free fields (i.e., p = p =0 )  correspond to those obtained by 
Misra and Radhakrishna (1962) with proper identification of arbitrary 
constants. Similarly it can be shown that our solutions without the contribu- 
tion of the Zel'dovich fluid correspond to those obtained by Rao et al. 
(1972) (with scalar field V = 0  and adjusting the arbitrary constants in- 
volved). 
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